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1 Note

These course notes are my notes from EECS 126 : Probability and Random
Processes. The course is linked here.
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2 Probability Basics

For this section, since this is mostly review, I will brush over most topics and
state them without proof.

2.1 Probability Fundamentals

Definition 2.1 (Probability Space). A probability space is a triple (Ω,F , P )
where Ω is the sample space, F is the family of subsets of Ω, and P is the
probability measure.

Technical Assumption: F is a σ-algebra containing Ω itself, meaning that the
countable complements/unions/intersections of events are events.

Definition 2.2 (Kolmogorov Axioms). Probability measures must obey the
Kolmogorov Axioms:

• P (A) ≥ 0 ∀A ∈ F

• P (Ω) = 1

• If A1, A2, ... ∈ F and Ai∩Aj = Ø ∀i 6= j, then P (∪i≥1Ai) =
∑
i≥1 P (Ai)

Theorem 1 (Law of Total Probability). If Ai are disjoint and ∪i≥1Ai = Ω,
then P (B) =

∑
i≥1 P (Ai ∩B).

Definition 2.3 (Conditional Probability). If B is an event with P (B) > 0, then

conditional probability of A given B is P (A|B) := P (A∪B)
P (B) .

Theorem 2 (Bayes Rule). If events A and B have positive probability, then

P (A|B) = P (B|A)P (A)
P (B) .

Definition 2.4 (Independence). Events A, B are independent if P (A ∩ B) =
P (A)P (B).

Definition 2.5 (Conditional Independence). If events A, B, C with P (C) > 0
satisfy P (A ∪B|C) = P (A|C)P (B|C).

2.2 Random Variable

Definition 2.6. A random variable is a function X : Ω→ R with the property
{ω ∈ Ω : X(ω) ≤ α} ∈ F ∀α ∈ R.

This means that P (X ≤ α) := P ({ω ∈ Ω : X(ω) ≤ α}). Technical definition of
r.v. implies that

• If X, Y are r.v.s, then so is X + Y , XY , Xp where p ∈ R

• If X1, X2, ... are r.v.s, then so is limn→∞Xn
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Definition 2.7 (Discrete Random Variables). A discrete r.v. is a r.v. that
takes countably many values.

Definition 2.8 (Continuous Random Variables). A continuous r.v. is a r.v.
defined via its density fX : R → [0,∞). So Pr{X ∈ B} =

∫
B
fX(x)dx where

fX ≥ 0 and
∫

R fX(x)dx = 1.

2.3 Expectation

Definition 2.9 (Expectation). For a discrete r.v. X, its expectation is E[X] =∑
x∈X xpx(x) provided that the series exists. For a continuous r.v., its expec-

tation is E[X] =
∫

R xfX(x)dx. More generally, E[g(X1, ..., Xn)] =∫
...
∫

Rn g(x1, ..., xn)fX1,...,Xn(x1, ..., xn)dx1...dxn

Theorem 3 (Law of the Unconscious Statistician). If Y = g(X) and g : X → R,
then Y is a r.v. and E[Y ] =

∑
x∈X g(x)pX(x).

Theorem 4 (Linearity of Expectation). E[aX + bY ] = aE[X] + bE[Y ] where
a, b ∈ R.

Theorem 5 (Product of Expectation of Independent R.V.s). If X, Y are inde-
pendent random variables, E[XY ] = E[X]E[Y ]

Theorem 6 (Tail Sum Formula for Expectation). For a discrete r.v., E[X] =∑∞
k=1 Pr{X ≥ k}

2.4 Variance, Covariance, and Correlation

Definition 2.10 (Variance). Var(X) := E
[
(X − E[X])2

]
= E[X2]− (E[X])2

Theorem 7 (Sum of Variances of Independent R.V.s). If X, Y are independent,
then Var(X + Y ) = Var(X) + Var(Y ).

Definition 2.11 (Covariance). Cov(X,Y ) = E
[
(X − E[X])(Y − E[Y ])

]
X, Y independent =⇒ Cov(X, Y) = 0 ⇐⇒ X, Y are uncorrected

Definition 2.12 (Correlation Coefficient). ρ(X,Y ) := Cov(X,Y )
σXσY

Note that |ρ(X,Y )| ≤ 1.

2.5 Multiple Random Variables

Definition 2.13 (Conditional Expectation). If X is a discrete r.v., E[X|Y =
y] :=

∑
x∈X xpX|Y (x|y). If Y is a continuous r.v., E[X|Y = y] :=

∫
xfX|Y (x|y)dx.

Theorem 8 (Tower Property). E[f(Y )X] = E
[
f(Y )E[X|Y ]

]
If f(Y ) = 1, then E[E[X|Y ]] = E[X].
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Definition 2.14 (Conditional Variance). Var(X|Y = y) = E[(X − E[X|Y =
y])2|Y = y] = E[X2|Y = y]− (E[X|Y = y])2

Definition 2.15 (Minimum Mean Square Error (MMSE)). E[Var(X|Y )] =
E[(X − E(X|Y ))2]

Theorem 9 (Law of Total Variance). Var(X) = E[Var(X|Y )] + Var(E[X|Y ])

2.6 Notes on Distributions

2.6.1 Exponential

Exp(λ) is the unique continuous r.v. with the memoryless property: P (X >
t + s|X > s) = P (X > t) ∀s, t ≥ 0. Also note that if Xi are independent
exponentials with parameter λi, then P (Xi = min1≤k≤nXk) = λi∑n

j=1 λj
because

min1≤k≤nXk ∼ Exp(
∑n
j=1 λj).

2.7 Order Statistics

Let X1, .., Xn be IID and sort them so that X(1) ≤ ... ≤ X(n). Then

fX(i)(y) = n

(
n− 1

i− 1

)
FX(y)i−1(1− FX(y))n−ifX(y)

2.8 Moment Generating Function

A moment generating function (MGF) encodes moments of a distribution into
coefficients of some power series.

MX(t) := E[etX ] = E
[∑
n≥0

(tX)n

n!

]
=
∑
n≥0

tn

n!
E[Xn] t ∈ R

In fact, if an MGF exists, it uniquely determines the distribution of X. To
recover the nth moment we simply do

dn

dtn
MX(t)|t=0 = E[Xn]

2.9 Concentration Inequalities

Theorem 10 (Markov Inequality). If X is non-negative r.v., P (X ≥ t) ≤
E[X]
t t > 0

Theorem 11 (Chebyshev’s Inequality). P (|X − E[X]| ≥ t) ≤ V ar(X)
t2

Theorem 12 (Chernoff Bound). P (X ≥ a) ≤ E[etX ]
eta = e−taMX(t) t > 0
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2.10 Convergence of Random Variables

Definition 2.16. Three modes of convergence:

• Almost Sure Convergence: Xn → X a.s. if P (limn→∞Xn = X) = 1

• Convergence in Probability: Xn → X i.p if limn→∞ P (|Xn −X| > ε) = 0
for ε > 0

• Convergence in Distribution: Xn → X i.d. if limn→∞ FXn(x) = FX(x)
for all continuity poiints x of FX

Note that a.s. =⇒ i.p =⇒ i.d.

Theorem 13 (Weak Law of Large Numbers (WLLN)). 1
N

∑N
i=1Xi → E[X] in

probability if Xi are IID and E[|X|] <∞.

Theorem 14 (Strong Law of Large Numbers (SLLN)). 1
N

∑N
i=1Xi → E[X]

almost surely if Xi are IID and E[|X|] <∞.

Theorem 15 (Central Limit Theorem (CLT)). Let Xi be IID and V ar(X) =

σ2 <∞ and E[X] = µ. We define Sn =
∑n
i=1(Xi−µ)√

nσ
. Then Sn → N (0, 1) i.d.

Problem Solving Strategies: For i.p. convergence, try Chebyshev.
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3 Information Theory

3.1 Definitions

Definition 3.1 (Entropy). H(X) :=
∑
x pX(x)log 1

pX(x) = E[log 1
pX(X) ]

Definition 3.2 (Conditional Entropy). The conditional entropy is the average
amount of uncertainty remaining in random variable X after observing Y.

H(X|Y ) =
∑
y∈Y

pY (y)H(X|Y = y)

=
∑
y∈Y

pY (y)
∑
x∈X

pX|Y (x|y)log2
1

pX|Y (x|y)

= −
∑

y∈Y,x∈X
pX,Y (x, y)log2

pX,Y (x, y)

pY (y)

Definition 3.3 (Mutual Information). The mutual information is the amount
of information about X gained by observing Y.

I(X;Y ) :=
∑

pXY (x, y)log
pXY (x, y)

pX(x)pY (y)

= H(X)−H(X|Y )

Theorem 16. H(X,Y ) = H(Y ) +H(X|Y ) = H(X) +H(Y |X)

Theorem 17. I(X;Y ) = H(X) +H(Y )−H(X,Y ) = I(Y ;X)

Theorem 18. H(X|Y ) ≤ H(X)

Theorem 19. If X1 and X2 are independent r.v., H(X1 +X2) ≥ H(X1)

3.2 Asymptotic Equipartition Theorem (AEP)

Theorem 20 (AEP). If (Xi)i≥1
IID∼ pX , then − 1

n log p(X1, ..., Xn) → H(X)
i.p.

Proof. By WLLN, − 1
n log p(X1, ..., Xn) = 1

n

∑n
i=1 log 1

pX(Xi)
→ E[log 1

pX(X) ] =

H(X) i.p.

In other words, with overwhelming probability, we see that p(X1, ..., Xn) ≈
2−nH(X).

Definition 3.4 (Typical Set). Fix ε > 0 and for each n ≥ 1 define the typical
set:

A(n)
ε = {(X1, ..., Xn) : p(X1, ..., Xn) ≥ 2−n(H(X)+ε)}

• P ((X1, ..., Xn) ∈ A(n)
ε )→ 1 as n→∞ by AEP

• |A(n)
ε | ≤ 2n(H(x)+ε) because

1 ≥
∑

(X1,...,Xn)∈A(n)
ε

p(X1, ..., Xn) ≥
∑

(X1,...,Xn)∈A(n)
ε

2−n(H(X)+ε) = |A(n)
ε |2−n(H(X)+ε)
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3.3 Source Coding Theorem

Theorem 21 (Source Coding Theorem). For any ε > 0, IID discrete r.v.s Xi

can be losslessly represented using ≤ n(H(x)+ε) bits (for all n sufficiently large).
Conversely, any representation using < nH(X) bits is impossible without loss
of information.

Proof. We will prove the achievability part of the theorem. Our protocol for
source coding will be:

• If I observe (X1, ..., Xn) ∈ A(n)
ε
2

, I will describe it using ∼ log |A(n)
ε/2| bits

≤ n(H(X) + ε/2)

• If I observe (X1, ..., Xn) /∈ A(n)
ε/2, I just describe it brute force using nlog|X|

bits.

Then

E[# bits] ≤ n(H(X) +
ε

2
)P ((X1, ..., Xn) ∈ A(n)

ε/2) + nlog |X|P ((X1, ..., Xn) /∈ A(n)
ε/2

≤ n(H(X) + ε) for all n sufficiently large

3.4 Information Transmission

Fix a rate R > 0, send message M ∼ Uniform(1...2nR). It takes nR bits to
represent H(M) = nR. The message is encoded into Xn(M), put through a
noisy channel to become Y n, and then decoded to become M̂(Y n). The rate

R = H(M)
n and the error probability P

(n)
e := P (M̂ 6= M).

Definition 3.5 (Capacity). C = maxpX I(X;Y ) = max mutual info between
channel input and output over all input distributions

Theorem 22 (Shannon’s Channel Coding Theorem). Fix channel pY |X , ε > 0,
and R < C.

• For all n sufficiently large, there exists rate-R communication scheme (en-

coder/decoder) that achieves P
(n)
ε < ε

• If R > C, then P
(n)
e → 1 for any sequence of communication schemes.

Definition 3.6 (Binary Symmetric Channel (BSC)). In BSC(p), each input
is flipped independently with probability p. C = 1 − H2(p) where H2(p) =
plog 1

p + (1− p)log 1
1−p .

Definition 3.7 (Binary Erasure Channel (BEC)). In BEC(p), each input is
erased independently with probability p. C = 1− p.
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Proof of Channel Coding Theorem for BEC(p). Suppose we have n channel uses
and knew which positions were erased and un-erased. There are then ≤ n(1 −
p + ε) unerased positions with overwhelming probability for any ε > 0 and n
sufficiently large. We can only reliably send ≈ n(1 − p) bits so R ≤ 1 − p. So
we have proved that for R > C, this is not possible.
To prove that R < C allows reliable communication, we fix R < 1 − p − ε and

generate a random matrix C ∈ R(n×2nR) such that Cij
IID∼ B(1/2). Our pro-

tocol is to give C to both the encoder and decoder, send row M of C, and on
receiving Y n look for row in C that matches modulo erasures (error if ≥ 2 rows
match what was received).

Ec[P
(n)
ε ] =

∑
E⊂[n]

E[1{M̂ 6= M}|E]P (bits erased = E)

≤
∑

E:|E|≤n(p+ε/2)

E[1{M̂ 6= M}|E]P (E) + P (
1

n
|E| > p+ ε/2)

≤
∑

E:|E|≤n(p+ε/2)

P (∪2
nR

m≥2{C(1, [n]\E) = C(m, [n]\E)}|E)P (E)

≤
∑

E:|E|≤n(p+ε/2)

2nR∑
m≥2

(
1

2
)n−|E|P (E)

≤
∑

E:|E|≤n(p+ε/2)

2−nεP (E)

→ 0 as n→∞

So there must exist some sufficiently large n such that P
(n)
e < ε. Note that in

line 2, the right hand term goes to zero as n goes to infinity.
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4 Discrete Time Markov Chains (DTMCs)

4.1 Construction

Definition 4.1 (Markov Chain). (Xn)n≥0 is a MC if each r.v. Xi is a discrete
r.v. taking values in discrete set S, and for all n ≥ 0 and i, j ∈ S

P (Xn+1 = j|Xn = i,Xn−1 = xn−1, ..., X0 = x0) = P (Xn+1|Xn = i)

For this course, we will be workly only with temporally homogeneous markov
chains.

Definition 4.2 (Temporally Homogeneous Markov Chains). For temporally
homogeneous markov chains, P (Xn+1 = j|Xn = i) = pij . In other words,
transition probabilities don’t depend on time.

Theorem 23 (Chapman-Kolmogorov Equations). n-step transition probabili-
ties can be computed as Pnij =

[
Pn
]
ij

. Note that P (Xn = j|X0 = i) := Pnij.

4.2 Classification of States

If there is a path form i to j, then we say i→ j. If there is also path from j to
i, then i and j communicate (i.e. i ↔ j). ↔ is an equivalence relation on S. In
other words, it partitions S into classes of communicating states.

Definition 4.3 (Irreducible). A MC is irreducible if it has only one class.

Define Ti = min{n ≥ 1 : Xn = i} and period(i) := GCD{n ≥ 1 : Pnii > 0}. So
aperiodic means period is 1. Below are a list of class properties:

• Recurrent if process starting at start i revisits state i with probability one

• Transient if it is not recurrent

• Positive Recurrent if recurrent and E[Ti|X0 = i] <∞

• Null Recurrent if recurrent and E[Ti|X0 = i] =∞

• Periodicity (i.e. period is the same in same class)

4.3 Big Theorem

Definition 4.4 (Stationary Distribution). A probability distribution π = (πi)i ∈ S
is said to be a stationary distribution if π = πP . In other words, πj =∑
i∈S πipij ∀j ∈ S.

Theorem 24 (Big Theorem for Markov Chains). Let (Xn)n≥0 be an irreducible
MC. Exactly one of the following is true:

1. Either all states are transient, or all are null recurrent. In this case, no
stationary distribution exists, and limn→∞ Pnij = 0 for all i, j ∈ S

12



2. All states are positive recurrent. In this case, a stationary distribution π
exists. It is unique and satisfies

πj = lim
n→∞

1

n

n∑
k=1

P kij =
1

E[Tj |x0 = j]

Moreover, if the MC is aperiodic, then

lim
n→∞

Pnij = πj ∀i, j ∈ S

In fact, every finite-state MC is positive recurrent.

Definition 4.5 (Reversible). An irreducible MC is reversible if there exists a
probability vector π satisfying πjPji = πiPij ∀i, j ∈ S. These are call the
detailed balance equations.

If a MC is reversible, then π is a stationary distribution. (also unique by Big
Theorem) Also note that MC trees satisfy DBE due to flow-in equals flow-out
for any cut of MC. Therefore, examples like birth-death chains are reversible.

4.4 First Step Equations (FSE)

Consider A ⊂ S, and define hitting time as TA = min{n ≥ 0 : Xn ∈ A}. This
is hard to do so we will instead try to compute ti = E[TA|X0 = i]. We can
compute this by formulating first step equations:

• For i /∈ A, ti = 1 +
∑
j∈S pijtj

• For i ∈ A, ti = 0

13



5 Poisson Processes

5.1 Construction

A Poisson Process is an example of a counting process. A counting process
(Nt)t≥0 is a non-decreasing continuous-time integer-valued random process,
which has right continuous sample paths.

Definition 5.1 (Poisson Process). A rate-λ Poisson Process (i.e. PP(λ)) is a

counting process with i.i.d inter-arrival times Si
IID∼ Exp(λ). Equivalently, a

counting process is PP(λ) iff N0 = 0, Nt−Ns ∼ Poisson(λ(t− s)) for 0 ≤ s ≤ t,
and (Nt)t≥0 has independent increments.

To elaborate on this, we will define Ti to be the arrival times, so Ti = min{t ≥
0 : Nt ≥ i}, which is the time of ith arrival. We also define the inter-arrival
time, Si = Ti − Ti−1, for i ≥ 1.

Theorem 25. If (Nt)t≥0 is a PP(λ), then for t ≥ 0, Nt ∼ Poisson(λt). I.e.

Pr{Nt = n} = e−λt(λt)n

n!

Proof.

Pr{Nt = n} = Pr{Tn ≤ t < Tn+1}
= E[1{Tn≤t}1{t≤Tn+Sn+1}]

=

∫
fTn(s)1{s≤t}E[1{t≤s+Sn+1}]ds

=

∫ t

0

fTn(s)E[1{t−s≤Sn+1}]ds

=

∫ t

0

fTn(s)e−λ(t−s)ds

=

∫ t

0

λe−λs(λs)n−1

(n− 1)!
e−λ(t−s)ds (fTn(s) is Erlang)

=
λne−λt

(n− 1)!

∫ t

0

sn−1ds

=
(λt)ne−λt

n!

Remark. By the memoryless property of Exp(λ), if (Nt)t≥0 ∼ PP(λ), then
(Nt+s−Ns)t≥0 ∼ PP(λ) for all s ≥ 0. Moreover, (Nt+s−Ns)t≥0 is independent
of (Nτ )0≤τ≤s. In particular, Poisson Processes have independent and stationary
increments. If t0 < ... < tk, then (Nt1 −Nt0), ..., (Ntk −Ntk−1

) are independent
and (Nti −Nti−1) ∼ Poisson(λ(ti − ti−1)) for all i.
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5.2 Conditional Distribution of Arrivals

Theorem 26. Conditioned on {Nt = n}, (T1, ..., Tn)
d
= (U(0), ..., U(n)) where

U(i) are the order statistics of n Uniform(0,t) random variables.

In other words, given n arrivals occurred up to time t, the arrival times look
like i.i.d Unif(0, t) random variables in distribution.

Proof. Let 0 = t0 ≤ t1 ≤ ... ≤ tn ≤ t, then

fT1T2...Tn|Nt(t1...tn|n) =
Pr{Nt = n|T1 = t1, ..., Tn = tn}

Pr{Nt = n}
fT1...Tn(t1...tn)

=
Pr{Nt −Ntn = 0}

Pr{Nt = n}

n∏
i=1

fSi(ti − ti−1)

=
e−λ(t−tn)

e−λt (λt)
n

n!

n∏
i=1

λe−λ(ti−ti−1)

=
n!

tn
(density of uniform random order statistics)

5.3 Merging

Theorem 27. If (N1,t) ∼ PP(λ1) and (N2,t) ∼ PP(λ2) are independent, then
(N1,t +N2,t) ∼ PP(λ1 + λ2).

Proof. We will show that the sum of the two independent Poisson Processes
satisfies the three properties of a PP:

1. N1,0 +N2,0 = 0 + 0 = 0

2. For 0 ≤ s ≤ t,

(N1,t +N2,t)− (N1,s +N2,s) = (N1,t −N1,s) + (N2,t −N2,s)

d
= Poisson(λ1(t− s)) ∗ Poisson(λ2(t− s))
= Poisson((λ1 + λ2)(t− s))

3. (N1,t+N2,t)t≥0 has independent increments since (N1,t)t≥0, (N2,t)t≥0 has
independent increments.

5.4 Splitting (a.k.a Thinning)

Theorem 28. Let p1, ..., pk be non-negative such that
∑k
i=1 pi = 1 and (Nt)t≥0

be a PP(λ). Mark each arrival with label ”i” with probability pi, independently
of all other arrivals so that (Ni,t)t≥0 be the process that counts arrivals marked
with ”i”. Then (Ni,t)t≥0, for i = 1, ..., k, are independent Poisson Processes
with respective rates piλ for i = 1, ..., k.

15



Proof. We will only prove for k = 2. This is sufficient because we can simply
do induction to get k > 2. For k = 2, we let p1 = p and p2 = 1− p.

Pr{N1,t = n,N2,t = m} = Pr{N1,t = n,N2,t = m,Nt = n+m}
= Pr{1,t= n,N2,t = m|Nt = n+m}Pr{Nt = n+m}

=

(
n+m

n

)
pn(1− p)me−λt (λt)n+m

(n+m)!

= e(−pλ)t
(pλt)n

n!
e(−(1−p)λ)t

((1− p)λt)m

m!
= Poisson(pλt)Poisson((1− p)λt)

5.5 Random Incidence Paradox

Consider (Nt)t≥0 ∼ PP (λ) and pick a random time t0. What is the expected
length of the inter-arrival interval in which t0 falls?

Say it falls between Ti and Ti+1. Then the length of the inter-arrival interval is
L = (t0−Ti)+(Ti+1−t0). We know that Ti+1−t0 ∼ Exp(λ) by the memoryless
property of the exponential distribution. We also know that

Pr(t0 − Ti > s) = Pr(no arrivals in (t0 − s, s)) = Pr(Nt0 −Nt0−s = 0) = e−λs

so t0 − Ti ∼ Exp(λ). By linearity of expectation, E[L] = 2
λ . If we arrive at a

random time, we are more likely to land in a long interval.
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6 Continuous Time Markov Chains (CTMCs)

6.1 Construction

Intuitively, a CTMC is a markov chain where we need to wait for Exp(λ) time
before transitioning to the next state.

Definition 6.1 (CTMC). Let S be a countable state space. A CTMC is de-
fined in terms of a rate matrix Q satisfying [Q]ij ≥ 0 for i 6= j, i, j ∈ S and∑
j∈S [Q]ij = 0 for all i ∈ S. Specifically, the transition rate for state i is

qi := [Q]ii = −
∑
j 6=i[Q]ij . We also have [Q]ij = qipij such that

∑
j∈S pij = 1

where pii = 0 and pij ≥ 0. pij are the transition probabilities for an associated
DTMC called the jump chain.

A CTMC with rate matrix Q works as followed:

1. Start with X0 = i.

2. Hold for Exp(qi) amount of time, then jump to state j ∈ S with probability
pij where j ∈ S.

3. Repeatedly apply the previous line above at next states (starting at state
j).

We can equivalently define CTMCs by their jump rates qij . On entering state i,
consider independent random variables Tj ∼ Exp(qij) for j ∈ S\{i} and jump
to state j∗ = argminj∈S(Tj : j ∈ S) at time Tj∗ . This valid due to the splitting
property of Poisson Processes.

Remark. This is called a markov chain by the memoryless property of the ex-
ponential distribution:

Pr(Xt+τ = j|Xt = i,Xs = is, 0 ≤ s < t) = Pr(Xt+τ |Xt = i)

6.2 Stationary Distributions

Definition 6.2 (CTMC Stationarity). A probability vector π is (without con-
sidering pathological cases) a stationary distribution for a CTMC with rate
matrix Q if πQ = 0. This called the rate conservation principle. This is
equivalent to πjqj =

∑
i∈S πiqij for all j ∈ S. In other words, assuming that

Pr(Xt = i) = πi, the rate at which transitions are made out of j is equal to the
rate at which transitions are made into j.

6.3 Classification of States

Similar to DTMCs, we can classify the states.

• We say i and j communicate (i.e. i ←→ j) iff i ←→ j is a jump chain iff we
can travel i→ j and back.
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• Classes in CTMC are same as those in associated jump chain.

• State j is transient if, given X0 = j, (Xt)t≥0 re-enters state j finitely many
times with probability one. State j is recurrent otherwise.

• For a recurrent state j, define Tj = min{t ≥ 0 : Xt = j and Xs 6=
j for some s < t }.

• State j is positive recurrent if E[Tj |X0] =∞.

• State j is null recurrent if E[Tj |X0 = j] =∞.

• Transience/Positive Recurrence/Null Recurrence are class properties

• There is no concept of periodicity.

6.4 Big Theorem

Theorem 29. We define P tij := Pr(Xt = j|X0 = i) and mj := E[Tj |X0 = j].
For an irreducible CTMC, exactly one of the following is true:

1. Either all states are transient or all states are null recurrent. In this case,
no stationary distribution exits, and limt→∞ P tij = 0 for all i, j ∈ S.

2. All states are positive recurrent. In this case, a unique stationary distri-
bution exits and satisfies πj = 1

mjqj
= limt→∞ P tij for all i, j ∈ S.

Remark. Stationary distribution in CTMC is not the same as the stationary
distribution in the jump chain. Generally speaking, π̃j =

πjqj∑
i∈S qiπi

given that∑
i∈S qiπi <∞ where π̃j is the stationary distribution of the jump chain. Equiv-

alently, πi =
1
qi
π̃i∑

j∈S
1
qj
π̃j

.

6.5 Examples

6.5.1 M/M/s queue

Customers arrive to a system with s servers according to PP(λ). If a server is

available, the arrival is immediately serviced, which takes
IID∼ Exp(µ). If no

server is available, the arrival waits until one becomes available. Let (Xt)t≥0
denote the number of customers in system at time t ≥ 0. We can model this

with qn,n+1 = λ and qn,n−1 =

{
nµ 1 ≤ n ≤ s
sµ n > s

.

6.5.2 Birth Death Chain

Individuals give birth
IID∼ PP (λ) and have lifetimes

IID∼ Exp(µ). Let Xt be
the number of individuals in population at time t. We can model this with
qn,n+1 = nλ and qn,n−1 = nµ. Note that this means qn = n(λ + µ) so then
pn,n+1 = λ

λ+µ and pn,n−1 = µ
λ+µ , so the DT jump chain is also a birth-death

chain.

18



6.5.3 M/M/∞ queue

This is the same of the M/M/s queue problem except there are infinite servers.
In this case qn,n+1 = λ and qn,n−1 = nµ. If we solve πQ = 0, we see that

πn = e−λ/µ(λ/µ)n

n! . By the Big Theorem, Xt
d−→ Poisson(λ/µ) where Xt is the

number of people in the system at time t.

6.6 First Step Equations (FSE)

If A ⊆ S, define TA = mint{t ≥ 0 : Xt ∈ A}. We want to compute E[TA|X0 = i],
so we will use FSEs to do this. Define ti := E[TA|X0 = i] and ti = 0 ∀i ∈ A.
Then we want to if ti = E[hold time] +

∑
pijtj ∀i ∈ S. Thus our FSEs are

ti = 0 ∀i ∈ A

ti =
1

qi
+
∑
j∈S

pijtj ∀i /∈ A

6.7 Uniformization

Uniformization is an approach to compute CTMC transition probabilities by
simulating a DTMC.

6.7.1 Context

For context, consider a CTMC with transition rates (qi)i∈S and assume ∃M > 0
s.t. qi ≤M ∀i ∈ S. We want to find Pt for some t ≥ 0. Here,[

Pt
]
ij

:= Pr(Xt = j|x0 = i)

Markovity gives the Chapman-Kolmogorov Equations, which is P s+t = P sP t ∀s, t ≥
0. We can also show that for h ≈ 0, Ph ≈ I + hQ+O(h) so

P t+h = P tPh

≈ P t(I + hQ+O(h))

P t+h − P t

h
= P tQ+

O(h)

h
∂

∂t
P t = P tQ

P t = etQ :=
∑
k≥0

(tQ)k

k!
∀t ≥ 0

So we’ve found a way to compute P t, but this becomes intractable for large
state spaces. This is where uniformization comes in.
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6.7.2 Construction

Let us define a uniformized DTMC which is a DTMC, given γ ≥ M , with
transition probabilities

pij =
qij
γ

pii = 1− qi
γ

i, j ∈ S

If Pu = transition matrix with uniformed DTMC, then Pu = I+ 1
γQ. So observe

πPu = π+ 1
γπQ. In other words, πPu = π ⇐⇒ πQ = 0 ⇐⇒ π is a stationary

distribution for both the CTMC and uniformized DTMC. So we’re beginning
to see that the behavior of the two chains are similar. In fact, we can see that

Pnu = (I +
1

γ
Q)n ≈ e

n
γQ

So to estimate P t, we can run the uniformized DTMC for n ≈ γt steps be-
cause P t = etQ ≈ e

n
γQ ≈ Pnu . Notice that with a larger γ, we get a better

approximation.
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7 Random Graphs

7.1 Definition

Definition 7.1 (Erdős–Rényi Random Graphs). Fix n ≥ 1 and p ∈ [0, 1]. A
random graph G(n, p) is an undirected graph on n vertices, where each edge is
placed independently with probability p.

7.2 Thresholds

The flavor of results around random graphs are threshold results (aka phase
transitions).

7.2.1 Existence of Edges

An example is if p >> 1
n2 then graph has edges with high probability but if

p << 1
n2 then graph doesn’t have edges with high probability. To prove this, let

X = # of edges in G(n, pn) and take pn = c
n2 . Note that X ∼ Binomial(

(
n
2

)
, pn).

So P (X = 0) = (1−pn)(
n
2) → e−c/2. So if c >> 1, P (X = 0) ≈ 0 and if c << 1,

P (X = 0) ≈ 1.

7.2.2 Existence of Cycles

If p >> 1
n , there exists a cycle whp. If p << 1

n , there doesn’t exist a cycle whp.

7.2.3 Largest Connected Components

If p >> 1
n , the largest connected component is of size Θ(n). If p << 1

n , the
largest connected component is of size O(log n).

7.2.4 Connectivity

Lemma 1. P (X = 0) ≤ Var(X)
(E[X])2

Proof.

V ar(X) = P (X = 0)E[(X − E(X))2|X = 0] + P (X 6= 0)E[(X − E(X))2|X 6= 0]

≥ P (X = 0)(E[X])2

Theorem 30 (Erdős–Rényi). Fix λ > 0, and let pn = λ log n
n . If λ > 1, then

P(G(n, pn) is connected) → 1. If λ < 1, then P(G(n, pn) is connected) → 0.

Proof. When λ < 1, let X = number of isolated vertices. We want to show that
P (X = 0)→ 0. Let Ii be the indicator that vertex i is isolated. Then

E[X] = nE[Ii] = n(1− p)n−1 := nq
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V ar(X) =
∑

V ar(Ii) +
∑
i 6=j

Cov(Ii, Ij) = nq(1− q) + n(n− 1)
pq2

1− p

So P (X = 0) ≤ nq(1−q)+n(n−1) pq
2

1−p
n2q2 = 1−q

nq + p
1−p ≤

1
nq + p

1−p → 0 as p goes to

0 and n goes to infinity. 1
nq converges to 0 because log(nq) = log(n) + (n −

1)log(1− p) ≈ log(n)− (n− 1)p = log(n1−λ)→∞ since λ < 1.

When λ > 1,

P (G(n, p) is disconnected) = P (∪n/2k=1{exists set of k disconnected vertices})

≤
n/2∑
k=1

(
n

k

)
(1− p)k(n−k)

→ 0 for λ > 1

22



8 Statistical Inference

8.1 MAP/MLE

Let X be the state of nature that takes values in {0, ...,M−1} (i.e. M hypotheses
to consider), and Y be the observation. Then the model is represented by
likelihoods pY |X(y|x). We will be doing bayesian inference, so we are assuming
that X is a random variable with a known distribution P (X = i) = πi. We call
π the prior.

8.1.1 Maximum A Posteriori (MAP)

If we observe {Y = y}, then the a posteriori probability of {X = x} is given by:

P (X = x|Y = y) =
pY |X(y|x)π(x)∑
x̃ pY |X(y|x̃)π(x̃)

∝ pY |X(y|x)π(x)

The idea is that our prior has been updated given observations. This motivates
MAP.

X̂MAP (y) = argmax
x

pY |X(y|x)π(x) = argmax pX|Y (x|y)

8.1.2 Maximum Likelihood Estimation (MLE)

MAP estimate depends on likelihoods and prior. What if we don’t have a prior
though? Then let us assume that π is uniform over all x. This gives rise to
maximum likelihood estimate (ML):

X̂ML(y) = argmax
x

pY |X(y|x)

8.1.3 Likelihood Ratio Examples

8.1.3.1 BSC In a BSC(p), we can easily see that

X̂ML(y) = argmax
x∈{0,1}

pY |X(y|x) =

{
y p ≤ 1

2

1− y p > 1
2

For MAP, let π0 + π1 = 1. We see that for y = 0,

pY |X(0|x)π(x) =

{
(1− p)π0 x = 0

pπ1 x = 1

X̂MAP (0) =

{
0 p < π0

1 p ≥ π0

23



Similarly, for y = 1,

pY |X(1|x)π(x) =

{
pπ0 x = 0

(1− p)π1 x = 1

X̂MAP (1) =

{
0 1− p < π0

1 1− p ≥ π0

Definition 8.1 (Likelihood Ratio). We define L(y) :=
pY |X(y|1)
pY |X(y|0)

With the likelihood ratio, we can reformulate our BSC example as

X̂ML(y) =

{
1 L(y) ≥ 1

0 L(y) < 1

X̂MAP (y) =

{
1 L(y) ≥ π0

π1

0 L(y) < π0

π1

8.1.3.2 Continuous Observation Let Y = X + Z where X ∈ {0, 1} and
Z ∼ N (0, σ2) independent of X. Then the likelihoods are

fY |X(y|0) =
1√

2πσ2
e−

y2

2σ2

fY |X(y|1) =
1√

2πσ2
e−

(y−1)2

2σ2

So, we have

L(y) = e
y

σ2
− 1

2σ2

Then the likelhoods are

X̂ML(y) =

{
1 L(y) ≥ 1 ⇐⇒ y ≥ 1

2

0 L(y) < 1

X̂MAP (y) =

{
1 L(y) ≥ π0

π1
⇐⇒ y ≥ 1

2 + σ2log(π0

π1
)

0 L(y) < π0

π1

8.2 Binary Hypothesis Testing

The examples above are instances of binary hypothesis testing. Given X ∈
{0, 1}, two hypotheses discriminate between our observation y:

1. H0 : Y ∼ pY |X=0 (null hypothesis)

2. H1 : Y ∼ pY |X=1 (alternate hypothesis)

We want a decision rule or test, X̂ : y → {0, 1}. With any test, there are two
fundamental types of errors:
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1. Type I Error (False Positive) Probability: Pr(X̂(Y ) = 1|X = 0)

2. Type II Error (False Negative) Probability: Pr(X̂(Y ) = 0|X = 1)

The goal now is to choose a test such that for β ≥ 0,

X̂∗β = argmin
X̂:Pr(X̂(Y )=1|X=0)≤β

Pr(X̂(Y ) = 0|X = 1)

Theorem 31 (Neyman-Pearson Lemma). Given β ∈ [0, 1], the optimal decision
rule is a randomized threshold test

X̂β(y) =


1 L(y) > λ

0 L(y) < λ

Bernoulli(γ) L(y) = λ

where λ, γ are chosen so that P (X̂(Y ) = 1|X = 0) = β.

X̂∗β is called the Neyman-Pearson Rule. It is the most powerful test (minimizes
type II error, subject to constraint that P(Type I error) ≤ β.

Proof. Let u(β) be the error curve with β = Pr(X̂(Y ) = 1|X = 0) (Type I
Error) and u(β) be the corresponding Pr(X̂(Y ) = 0|X = 1) (Type II Error).
In other words, we have

u(β) := max
λ≥0

{
Pr(X̂λ(Y ) = 0|X = 1) + λ

(
Pr(X̂λ(Y ) = 1|X = 0)− β

)}

We will first show that all threshold tests lie on the error curve u. Note that for
a fixed λ0,

u(Pr(X̂λ0
(Y ) = 1|X = 0) ≥ Pr(X̂λ0

(Y ) = 0|X = 1)

The right side of the inequality is the Type II error for X̂λ0
, so it lies below the

error curve. Thus, all threshold tests lie below the error curve.

We will not show that all tests lie above the error curve. Fix λ ∈ [0,∞) so
that X has the prior λ0

λ1
= λ. Thus, X̂MAP (Y ) = X̂λ(Y ). Note that

Pr(X̂MAP (Y ) 6= X) ≤ Pr(X̂(Y ) 6= X) ⇐⇒
π0Pr(X̂(Y ) = 1|X = 0) + π1Pr(X̂(Y ) = 0|X = 1)

≥ π0Pr(X̂λ(Y ) = 1|X = 0) + π1Pr(X̂λ(Y ) = 0|X = 1) ⇐⇒
Pr(X̂(Y ) = 0|X = 1)

≥ Pr(X̂λ(Y ) = 0|X = 1) + λ

(
Pr(X̂λ(Y ) = 1|X = 0)− Pr(X̂(Y ) = 1|X = 0)

)
⇐⇒

Pr(X̂(Y ) = 0|X = 1) ≥u

(
Pr(X̂(Y ) = 1|X = 0)

)
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So then X̂ lies above error curve u.

Lastly, in the discrete case, it is possible our threshold value doesn’t lie ex-
actly on one of the x values. In this case, let X̂λ1

and X̂λ2
be the two threshold

tests closest to our threshold value. Our threshold value will be on a straight
line between X̂λ1 and X̂λ2 since that is the maximal convex line between the
two points. To achieve this threshold value, we will toss a coin with probability
γ to determine whether to use X̂λ1

or X̂λ2
.

8.2.1 Example

Recall that L(y) = e
y

σ2
− 1

2σ2 in example 8.1.3.2 . To find λ, we fix a Type I
error, β:

β = Pr(X̂(Y ) = 1|X = 0)

= Pr(L(Y ) ≥ λ|X = 0)

= Pr(Y ≥ 1

2
+ σ2log(λ)|X = 0)

= Pr(
Y

σ
≥ 1

2σ
+ σlog(λ)|X = 0)

= Pr(N(0, 1) ≥ 1

2σ
+ σlog(λ)|X = 0)

= 1− Φ(
1

2σ
+ σlog(λ))

We solve for λ in terms of β, σ.

8.3 Estimation

Hypothesis testing discriminates between 2 or more discrete hypotheses. Es-
timation is another inference problem, but now we try to guess the numerical
value of some unknown quantity. The setup for the problem is that there is
some unknown random variable X and a model pxy. Through our model pY |X ,

we get our observation Y from X. We estimate X from Y as X̂(Y ). We want
to choose X̂ to make the mean square error (MSE) E[(X − X̂(Y ))2] as small as
possible. Note that

Theorem 32. E[X|Y ] = argminX̂ E[(X − X̂(Y ))2]

However, E[X|Y ] can be hard to compute and/or we don’t know pxy exactly,
we can instead do linear estimation.

8.3.1 Linear Estimation

Let X̂(Y ) = a+
∑n
i=1 biYi where Y = (Y1, ..., Yn) is our vector of observations.

Then our MSE becomes a linear least squares estimates (LLSE) denoted by
L[X|Y ].
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8.3.1.1 Brute Force Approach We want to solve

min
a,b1,...,bn

E[|X − (a+

n∑
i=1

biYi)|2]

So we set

J(a, b1, ..., bn) := E[|X − (a+

n∑
i=1

biYi)|2]

= E[|X|2]− 2aE[X]− 2

n∑
i=1

biE[XYi] + a2

+ 2a

n∑
i=1

biE[Yi] +
n∑
i=1

b2iE[Y 2
i ] +

∑
i6=j

bibjE[YiYj ]

∂

∂a
J = 0 =⇒ a = E[X]−

n∑
i=1

biE[Yi]

∂

∂bi
J = 0 =⇒ E[XYi] = aE[Yi] + biE[Y 2

i ] +
∑
j 6=i

bjE[YiYj ]

If we assume E[X] = E[Yi] = 0, then a = 0 and E[XYi] =
∑n
j=1 bjE[YiYj ]. In

other words, ΣXY = bTΣY where ΣXY = E[(X − µX)(Y − µY )T ] and ΣY =
E[(Y − µY )(Y − µY )T ]. Thus, we have L[X|Y ] = bTY = ΣXY Σ−1Y Y . Without
zero mean, we then have:

L[X|Y ] = µX + ΣXY Σ−1Y (Y − µY )

8.3.1.2 Example Let X̂(Y ) = a + b1Y + b2Y
2, then L[X|Y ] = µX +

ΣXỸ Σ−1
Ỹ

(Ỹ − µỸ ) where Ỹ = (Y, Y 2).

8.3.1.3 Connection to Linear Regression Let Y = AX+Z where Σx =
σ2
xI, Σz = σ2

zI, and x, z are uncorrelated. Let A ∈ Rn×k. Assuming everything
is zero mean, we have

L[X|Y ] = ΣXY Σ−1Y Y

ΣXY = E[XY T ] = E[X(XTAT + ZT )] = σ2
XA

T

ΣY = E[Y Y T ] = E[(AX + Z)(AX + Z)T ] = σ2
XAA

T + σ2
ZI

=⇒ E[X|Y ] = σ2
XA

T (σ2
XAA

T + σ2
ZI)−1Y

= AT (AAT +
σ2
Z

σ2
X

I)−1Y

If we didn’t know σ2
X , then best we can do is assume σ2

X = +∞. Then,
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L[X|Y ] = lim
σ2
X→∞

AT (AAT +
σ2
Z

σ2
X

I)−1Y

= A†Y

= (ATA)−1ATY

assuming that A has full column-rank. Thus, linear regression is a special case
of linear estimation (i.e. non-Bayesian, linear observational model).

8.3.1.4 Hilbert Space Geometric Approach We can prove linear esti-
mation in a more geometric manner rather than the brute force manner above.
To do so, we need to first make some definitions.

Definition 8.2 (Vector Space). Let V be a vector space over real scalar field.
Let 〈·, ·〉 be an inner product on V. Then

1. 〈u, v〉 = 〈v, u〉 for u, v ∈ V (symmetry)

2. 〈au+ bv, w〉 = a〈u,w〉 + b〈v, w〉 for a, b ∈ R, a, v, w,∈ V (linearity)

3. 〈u, u〉 ≥ 0 ∀u ∈ V and 〈u, u〉 = 0 ⇐⇒ u = 0.

Definition 8.3 (Hilbert Space). Vector space V is a Hilbert Space if it is
complete with respect to ‖ · ‖. Vaguely, completeness means we can take limits
without popping out of the space.

Theorem 33 (Hilbert Projection Theorem). Let H be a Hilbert Space, and
U ⊂ H be a closed subspace. For each V ∈ H, there is a unique closest point
u ∈ U to V. I.e. argmini∈U ‖u − v‖ exists and is unique. Moreover, u ∈ U is
the closest point to V ∈ H iff 〈u− v, u′〉 = 0 ∀u′ ∈ U .

Note that ‖u‖2 +‖u−v‖2 = ‖v‖2 is valid in the Hilbert Space (i.e. Pythagorean
Theorem applies). Thus, we can get a geometric interpretation to the problem.
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Theorem 34. Let (Ω,F , P ) be a probability space. The collection of ran-
dom variables X with E[‖X‖2] < ∞ form a Hilbert Space w.r.t inner product
〈X,Y 〉 := E[XY ].

With these definitions/theorems, we can now derive L[X|Y ]. Give r.v. Y1, ..., Yn
with finite second moments, the space of r.v. U = {a+

∑
biYi; a, b1, ..., bn ∈ R}

is a closed subspace of the Hilbert Space of r.v.s. By the Hilbert Projection
Theorem, we have

L[X|Y ] = argmin
u∈U

‖X − u‖2 exists and is unique

= argmin
linearX̂

E[|X − X̂(Y )|2]]

〈L[X|Y ]−X,u〉 = E[(L[X|Y ]−X)u] = 0 ∀u

⇐⇒ E[(L[X|Y ]−X)(a+
∑

biYi)] = 0

⇐⇒ E[L[X|Y ]] = µx,E[(L[X|Y ]−X)Yi] = 0

The last line is called the orthogonality principle. It uniquely characterizes
L[X|Y ]. We see that the orthogonality principle matches with L[X|Y ] = µX +
ΣXY Σ−1Y (Y − µY ) by plugging in.
The error of LLSE is

E[(L[X|Y ]−X)2] = E[|X|2]− E[|L[X|Y ]|2] by Pythagorean Theorem

= Var(X)− E[|ΣXY Σ−1Y (Y − µY )|2] assuming E[X] = 0

= Var(X)− ΣXY Σ−1Y ΣY X
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8.3.1.5 Conditional Expectation Through the Lens of Hilbert Spaces
The definition of conditional expectation comes from the tower property:

E[E[X|Y ]g(Y )] = E[Xg(Y )]

Rather than proving this brute force, we can actually geometrically motivate this
through the lens of Hilbert spaces. If we define our Hilbert space to be E[XY ]
for r.v. with finite second moments and assume arbitrarily that E[X] = 0, we
can create a subspace of all functions of Y: {g(Y ) : E|g(Y )|2 < ∞}. Then by
the orthogonality principle,

E[(E[X|Y ]−X)g(Y )] = 0 ⇐⇒ E[E[X|Y ]g(Y )] = E[Xg(Y )]

Similarity, we can interpret the law of total variance by applying pythagorean
theorem on our orthogonality principle characterization of E[X|Y ]. Our MMSE
= E(X − E[X|Y ])2 satisfies the pythagorean theorem:

Var(X) = Var(E[X|Y ]) + E(VarX|Y )

Here Var(X) is the length of the hypotenuse.

8.3.1.6 Online Estimation How do we efficiently update our estimate on
arrival of new observations? For motivation, we start with a simpel setting.
Assume E[X] = 0 and zero-mean observations Y n = (Y1, ..., Yn) which are
orthogonal.

Theorem 35. L[X|Y n+1] = L[X|Y n]+L[X|Yn+1] = L[X|Y n]+Cov(X,Yn+1)
Var(Yn+1)

(Yn+1−
µn+1

Proof. We know that by the orthogonality principle, we have

E[(L[X|Y n+1]−X)Yk] = 0 ∀k ∈ {1, ..., n+ 1}

If you claim were true, then we have

E[(L[X|Y n] + L[X|Yn+1]−X)Yk] = 0 ∀k ∈ {1, ..., n+ 1}

E[(L[X|Y n] + L[X|Yn+1]−X)Yk] = 0

is true by orthog. principle and orthogonal observations.

8.3.1.7 Online Estimation with Gram-Schmidt Through online esti-
mation, we see that we have a nice way of sequentially updating our estimate
of X given new observations if they are uncorrelated. But what if they are
correlated? Then, we can just make them uncorrelated with Gram-Schmidt.
Define

Ỹn+1 = Yn+1 − L[Yn+1|Y n]

Note that L[Yn+1|Y n] is the projection of Yn+1 onto Span(1, Y1, ..., Yn). Thus
Ỹ1, ... are uncorrelated. Thus, L[X|Y n] = L[X|Ỹ n].
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8.4 Jointly Gaussian Random Variables

There are many equivalent definitions to JG r.v.s or Gaussian vectors:

1. A gaussian random vector X=(X1, ..., Xn)T is defined via its pdf

fX(x) =
1

(2π)n/2det(ΣX)1/2
exp

(
− 1

2
(X − µX)TΣ−1X (X − µX)

)

2. Gaussian random vectors are affine transformations of IID gaussian r.v.
So, if X has nonsingular ΣX , thenX = µX+AW whereW = (W1, ...,Wn)T

where wi
IID∼ N (0, 1)

3. X is a gaussian random vector iff all one-dimensional projects are gaussian
r.v.’s: aTX ∼ N (aTµX , a

TΣXa).

Note that ΣX = E(X − µX)(X − µX)T = AAT where µX = (µX1
, ..., µXn)T .

Theorem 36. If X, Y are JG r.v., then X = µX+ΣXY Σ−1Y (Y −µY )+V where
V ∼ N (0,ΣX − ΣXY Σ−1Y ΣY X) independent of Y.

Proof. Let X̃ = µX + ΣXY Σ−1Y (Y − µY ) + V . X̃ and Y are jointly gaussian
because since Y and V are independent gaussians, we have Y = µY +AW1 and
V = BW2 where W1, W2 are independent standard normals. Then[

X̃
Y

]
=

[
µX
µY

]
+

[
ΣXY Σ−1Y A B

A 0

] [
W1

W2

]

So (X̃, Y ) are JG where E[X̃] = µX and E[Y ] = µY . So can easily show that
ΣX̃Y = ΣXY and ΣX̃ = ΣX . So (X̃, Y ) = (X,Y ) in distribution.

Corollary 36.1. We also see that if X, Y are JG, then its conditional expec-
tation is its LLSE.

E[X|Y ] = E[µX+ΣXY Σ−1Y (Y −µY )+V |Y ] = µX+ΣXY Σ−1Y (Y −µY ) = L[X|Y ]

Remark. Gaussian marginals are not necessarily jointly gaussian. For instance,
If Y ∼ N (0, 1) and B = 1 w.p. 1/2 and -1 w.p. 1/2., then X = BY ∼ N (0, 1).
But X and Y are clearly not JG.

8.5 Kalman Filter

8.5.1 State Space Model

Let X0, V0, V1, ....,W0,W1, ... be uncorrelated random vectors, say zero-mean
(WLOG). The state space model is the evolution of the form

XN+1 = AXN + VN

YN = CXN +WN
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Remark. If X0, V0, V1, ....,W0,W1, ... are gaussian, then everything is JG.

There are many variations possible depending on A and C:

1. Prediction: estimate Xn+k from Y1, ..., Yn.

2. Filtering: estimate Xn from Y1, ..., Yn.

3. Smoothing: estimate Xn−k from Y1, ..., Yn.

Theorem 37 (Kalman Filter). Initialize X̂0|0 = 0, Σ0|0 = Cov(X0). For n ≥ 1,
do:

X̂n|n = AX̂n−1|n−1 +Kn(Yn − CAX̂n−1|n−1)

Kn = Σn|n−1C
T (CΣn|n−1C

T + ΣW )−1

Σn|n−1 = AΣn−1|n−1 + ΣV

Σn|n = (I −KnC)Σn|n−1
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